

Define biotechnology?

Biotechnology is use of living cells and organisms to develop products and processes that enhance various aspects of human life.

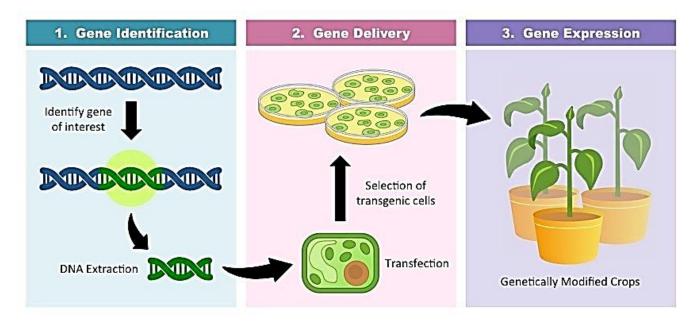
Genes:

- Genes are the basic units of heredity.
- These are instructions to make proteins.

Short questions

Define biotechnology as the use of living cells and organisms in products and processes that can improve the quality of life.

Illustrate how biotechnology is a discipline/field that has the potential to transform how we live.


Short questions

What are genes?

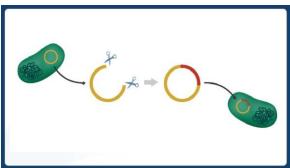
Define genetic engineering.

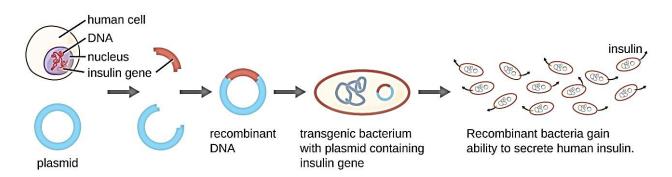
Genetic engineering:

Genetic engineering is an advanced technique in biotechnology in which scientists select and isolate the useful gene from one organism and insert it into another organism.

Transgenic organisms:

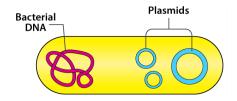
The organisms that contain a foreign gene in their cells are called transgenic organisms.


For example: Bacteria.


Short question

What are transgenic organisms?

What are plasmids?


Benefits of using bacteria in genetic engineering:

Bacteria are very useful in genetic engineering because:

- They are cheap.
- They are colonial.
- Simple and easy to grow.
- Multiply quickly.
- Can be stored at -80° C indefinitely
- Bacteria have additional circular DNA called "plasmid".

Short question

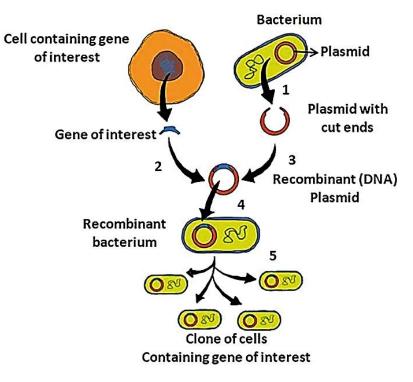
Why bacteria are beneficial in genetic engineering?

Steps of genetic engineering:

The steps to introduce a gene into bacterium are following:

- Identification and Isolation: Identify and isolate the desired gene (e.g., the gene for insulin).
- **Restriction Enzymes:** Use restriction enzymes to cut the gene of interest.
- Cutting Plasmid DNA: Cut the plasmid DNA using restriction enzymes.
- Attachment: Attach the isolated gene to the plasmid.
- Ligase Enzyme: Use ligase enzymes to bind the gene and plasmid together.
- Recombinant DNA: The combination of the gene of interest and the plasmid is now called "recombinant DNA".

Short questions


Define recombinant DNA.

Which enzymes are used to cut and join DNA of different organisms?

What is genetically modified bacterium?

Write different steps of genetic engineering.

How desired protein is obtained?

- **Insertion:** Insert the recombinant DNA back into the bacterium.
- **Genetically Modified Bacterium (GMB):** This bacterium is now a genetically modified bacterium or transgenic bacterium.
- **Culturing**: The transformed bacteria are cultured in large fermentation tanks. As they grow and divide, they use the inserted gene to produce the desired product, such as insulin.
- Extraction: The product (e.g., insulin) is extracted from the culture medium.

Multiple choice questions								
1. The additional circular pieces of DNA present in a bacterial cell are called:								
a.	RNA	b. Nucleotides	c.	Chromatids	d. Pla	asmids		
Expla	anation: Plasmids a	are small, circular, doub	ole-s	tranded DNA molecul	es that	are		
separate from the chromosomal DNA and can replicate independently within a bacterial cell.								
2.	Plasmid and atta	ched foreign gene with	it a	are collectively called	:			
a.	Recombinant	b. Recombinant DNA	c.	Recombinant plasmid		ecombinant romosome		
Expl	anation: When a fo	reign gene is inserted in	nto a	a plasmid, the resulting	comb	ination is		
called a recombinant plasmid.								
3. The organisms whose cells and plasmids are usually used in genetic engineering.								
a.	Bacteria	b. Fungi	c.	Algae	d. Vi	rus		
Explanation: Bacteria often contain small, circular pieces of DNA called plasmids.								
Scien	tists can insert gene	es of interest into these	plas	mids and then introduc	e the p	olasmids		
back into the bacteria.								
4.	Sections of DNA	serving as codes for de	evel	oping characters in a	n orga	nism are		
	called:							
a.	Genes	b. Nucleotides	c.	Plasmids	d. Pr	oteins		
Explanation: Genes are segments of DNA that contain the instructions for the development								
of specific traits in an organism.								
5. How do genetic engineers get insulin for diabetic patients?								

d. Insulin gene

inserted in

- a. Isolate from human pancreas
- b. Isolate from pancreas of other animals
- c. Insulin gene inserted in human pancreas

bacteria

Explanation: The insulin gene is inserted into bacteria, which then produce insulin through recombinant DNA technology. This method is commonly used to produce human insulin.

- 6. Why do genetic engineers use bacteria in genetic engineering?
- a. The chromosomes of bacteria is made of DNA and proteins.
- b. Their nucleus is very big and easy to handle.
- c. They have many chromosomes.
- d. Bacteria divide very fast and make colonies

Explanation: Bacteria are used in genetic engineering because they reproduce rapidly, allowing for the quick production of large quantities of the desired genetic material.

7. A gene is inserted into a bacterium by:

- a. Tissue culture
- b. Fermentation
- c. Biodegradation

d. Genetic

engineering

Explanation: Genetic engineering involves manipulating an organism's DNA to insert new genes, which is the method used to introduce a gene into a bacterium.

8. ______ is use of living cells and organisms to develop products and processes that enhance various aspects of human life.

- a. Biology
- b. Biotechnology
- c. Botany

d. Zoology

Explanation: Blotechin	lology is specifically in	ocused on using biological s	systems and fiving					
organisms to create and improve products and processes for various purposes, such as								
medicine, agriculture, and industrial applications.								
9. Application of knowledge in the areas like engineering and medicines is called:								
a. Technology	b. Robotics	c. Machine	d. Information					
Explanation: Technology involves applying scientific and technical knowledge to solve								
practical problems, including in fields like engineering and medicine.								
10. Which organisms are used in making bread, yogurt, cheese etc.								
a. Plants	b. Animals	c. Microorganisms	d. None					
Explanation: Microorganisms such as yeast and bacteria are essential in the production of								
bread (yeast), yogurt (bacteria), and cheese (bacteria and sometimes mold).								
11. Which of the following act as instructions to make specific substances (proteins)?								
a. Genes	b. Molecules	c. Proteins	d. All of these					
Explanation: Genes, which are segments of DNA, contain the instructions for synthesizing								
proteins. They are the blueprint for protein production in cells.								
12. The organism that contains a foreign gene in its cell is called								
a. Edited	b. Transgenic	c. New organism	d. Adult					
organism	organism	_	organism					
Explanation: A transgenic organism has had a foreign gene deliberately inserted into its								

genome. This is a common technique in genetic engineering to introduce new traits.

13 is an advanced technique in biotechnology in which scientist									
select and isolate the useful gene from one organism and insert it into another									
organism.									
a. Fermentation	on b. Respiration	c. Mechanical	d. Genetic engineering						
Explanation: Genetic engineering involves the direct manipulation of an organism's genes,									
including the transfer of specific genes from one organism to another to introduce new or									
enhanced traits.									
14. Which term describes the introduction of foreign DNA into an organism?									
a. Transcription	on b. Translation	c. Transformation	d. None of these						
Explanation: Transformation is a process where foreign DNA is introduced into a cell,									
leading to the incorporation of this DNA into the cell's genome.									
15. What is the first step in genetic engineering?									
a. Inserting the gene into a new organi	gene of sm interest	c. Cloning the gene	d. Verifying gene expression						
Explanation: Before any genetic engineering can begin, you need to determine which gene									
you want to manipulate or introduce. This involves identifying and isolating the gene of									
interest.									
16.A bacterial cell divides into two in:									
a. 10 minutes	b. 20 minutes	c. 30 minutes	d. 40 minutes						

Explanation: A bacterial cell typically divides into two in approximately 20 minutes,

though this can vary depending on the species and environmental conditions.

17. This diagram shows:

a. Bacteria

b. Virus

c. Algae

d. Fungi

Explanation: It is a bacterial cell because it does not have any nucleus.